Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
NPJ Vaccines ; 8(1): 43, 2023 Mar 18.
Article in English | MEDLINE | ID: covidwho-2281303

ABSTRACT

This study demonstrates the impact of adjuvant on the development of T follicular helper (Tfh) and B cells, and their influence on antibody responses in mice vaccinated with SARS-CoV-2-spike-ferritin-nanoparticle (SpFN) adjuvanted with either Army Liposome Formulation containing QS-21 (SpFN + ALFQ) or Alhydrogel® (SpFN + AH). SpFN + ALFQ increased the size and frequency of germinal center (GC) B cells in the vaccine-draining lymph nodes and increased the frequency of antigen-specific naive B cells. A single vaccination with SpFN + ALFQ resulted in a higher frequency of IL-21-producing-spike-specific Tfh and GC B cells in the draining lymph nodes and spleen, S-2P protein-specific IgM and IgG antibodies, and elicitation of robust cross-neutralizing antibodies against SARS-CoV-2 variants as early as day 7, which was enhanced by a second vaccination. This was associated with the generation of high titer, high avidity binding antibodies. The third vaccination with SpFN + ALFQ elicited high levels of neutralizing antibodies against the Omicron variant. No cross-neutralizing antibodies against Omicron were induced with SpFN + AH. These findings highlight the importance of ALFQ in orchestrating early induction of antigen-specific Tfh and GC B cell responses and long-lived plasma cells in the bone marrow. The early engagement of S-2P specific naive B cells and high titer IgM antibodies shape the development of long-term neutralization breadth.

2.
Vaccines (Basel) ; 10(5)2022 May 04.
Article in English | MEDLINE | ID: covidwho-1820450

ABSTRACT

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery that will improve vaccination compliance and demonstrate efficacy against emerging variants. Here, we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprising stabilized, pre-fusion spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction in lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.

3.
Sci Transl Med ; 14(632): eabi5735, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1691438

ABSTRACT

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants stresses the continued need for next-generation vaccines that confer broad protection against coronavirus disease 2019 (COVID-19). We developed and evaluated an adjuvanted SARS-CoV-2 spike ferritin nanoparticle (SpFN) vaccine in nonhuman primates. High-dose (50 µg) SpFN vaccine, given twice 28 days apart, induced a Th1-biased CD4 T cell helper response and elicited neutralizing antibodies against SARS-CoV-2 wild-type and variants of concern, as well as against SARS-CoV-1. These potent humoral and cell-mediated immune responses translated into rapid elimination of replicating virus in the upper and lower airways and lung parenchyma of nonhuman primates following high-dose SARS-CoV-2 respiratory challenge. The immune response elicited by SpFN vaccination and resulting efficacy in nonhuman primates supports the utility of SpFN as a vaccine candidate for SARS-causing betacoronaviruses.


Subject(s)
COVID-19 , Nanoparticles , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , Ferritins , Humans , Immunity , Macaca mulatta , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
4.
NPJ Vaccines ; 6(1): 151, 2021 Dec 13.
Article in English | MEDLINE | ID: covidwho-1569251

ABSTRACT

The emergence of variants of concern, some with reduced susceptibility to COVID-19 vaccines underscores consideration for the understanding of vaccine design that optimizes induction of effective cellular and humoral immune responses. We assessed a SARS-CoV-2 spike-ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel® or Army Liposome Formulation containing QS-21 (ALFQ) for unique vaccine evoked immune signatures. Recruitment of highly activated multifaceted antigen-presenting cells to the lymph nodes of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific memory CD4+ T cells and Kb spike-(539-546)-specific long-lived memory CD8+ T cells with effective cytolytic function and distribution to the lungs. The presence of this epitope in SARS-CoV, suggests that generation of cross-reactive T cells may be induced against other coronavirus strains. Our study reveals that a nanoparticle vaccine, combined with a potent adjuvant that effectively engages innate immune cells, enhances SARS-CoV-2-specific durable adaptive immune T cell responses.

5.
BMJ Case Rep ; 14(12)2021 Dec 07.
Article in English | MEDLINE | ID: covidwho-1562301

ABSTRACT

We present the case of an 82-year-old woman admitted to a regional emergency general surgery centre with severe left upper quadrant abdominal pain and tenderness within 21 days of receiving the first dose of the ChAdOx1 nCov-19 vaccine (Vaxzevria, AstraZeneca). Following further investigation through CT imaging, a thrombus was discovered in the patient's splenic artery resulting in a large splenic infarct. Splenic infarcts are rare and it is important to note the association between time of administration of the first dose of vaccine and the occurrence of thromboembolic complications in the noted absence of other risk factors for this condition. We hypothesise a link between Vaxzevria vaccine injection and a rare form of thromboembolic complication: thrombosis of the splenic artery.


Subject(s)
COVID-19 , Splenic Infarction , Thrombosis , Aged, 80 and over , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Female , Humans , SARS-CoV-2 , Splenic Infarction/diagnostic imaging , Splenic Infarction/etiology , Thrombosis/diagnostic imaging , Thrombosis/etiology , Vaccination
6.
Cell Rep ; 37(12): 110143, 2021 12 21.
Article in English | MEDLINE | ID: covidwho-1561098

ABSTRACT

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID50 > 10,000) following a single immunization, whereas RBD-ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations and also show durable and potent neutralization against circulating VoCs. Passive transfer of immunoglobulin G (IgG) purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2-blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.

7.
NPJ Vaccines ; 6(1): 129, 2021 Oct 28.
Article in English | MEDLINE | ID: covidwho-1493109

ABSTRACT

The emergence of SARS-CoV-2 variants of concern (VOC) requires adequate coverage of vaccine protection. We evaluated whether a SARS-CoV-2 spike ferritin nanoparticle vaccine (SpFN), adjuvanted with the Army Liposomal Formulation QS21 (ALFQ), conferred protection against the Alpha (B.1.1.7), and Beta (B.1.351) VOCs in Syrian golden hamsters. SpFN-ALFQ was administered as either single or double-vaccination (0 and 4 week) regimens, using a high (10 µg) or low (0.2 µg) dose. Animals were intranasally challenged at week 11. Binding antibody responses were comparable between high- and low-dose groups. Neutralizing antibody titers were equivalent against WA1, B.1.1.7, and B.1.351 variants following two high dose vaccinations. Dose-dependent SpFN-ALFQ vaccination protected against SARS-CoV-2-induced disease and viral replication following intranasal B.1.1.7 or B.1.351 challenge, as evidenced by reduced weight loss, lung pathology, and lung and nasal turbinate viral burden. These data support the development of SpFN-ALFQ as a broadly protective, next-generation SARS-CoV-2 vaccine.

8.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Article in English | MEDLINE | ID: covidwho-1392996

ABSTRACT

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/virology , Macaca mulatta/immunology , Nanoparticles/chemistry , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Neutralizing/biosynthesis , Antibodies, Neutralizing/immunology , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Ferritins/chemistry , SARS-CoV-2/metabolism , T-Lymphocytes/immunology
9.
Bone Jt Open ; 2(7): 530-534, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1311273

ABSTRACT

AIMS: Due to widespread cancellations in elective orthopaedic procedures, the number of patients on waiting list for surgery is rising. We aim to determine and quantify if disparities exist between inpatient and day-case orthopaedic waiting list numbers; we also aim to determine if there is a 'hidden burden' that already exists due to reductions in elective secondary care referrals. METHODS: Retrospective data were collected between 1 April 2020 and 31 December 2020 and compared with the same nine-month period the previous year. Data collected included surgeries performed (day-case vs inpatient), number of patients currently on the orthopaedic waiting list (day-case vs inpatient), and number of new patient referrals from primary care and therapy services. RESULTS: There was a 52.8% reduction in our elective surgical workload in 2020. The majority of surgeries performed in 2020 were day case surgeries (739; 86.6%) with 47.2% of these performed in the independent sector on a 'lift and shift' service. The total number of patients on our waiting lists has risen by 30.1% in just 12 months. As we have been restricted in performing inpatient surgery, the inpatient waiting lists have risen by 73.2%, compared to a 1.6% rise in our day-case waiting list. New patient referral from primary care and therapy services have reduced from 3,357 in 2019 to 1,722 in 2020 (49.7% reduction). CONCLUSION: This study further exposes the increasing number of patients on orthopaedic waiting lists. We observed disparities between inpatient and day-case waiting lists, with dramatic increases in the number of inpatients on the waiting lists. The number of new patient referrals has decreased, and we predict an influx of referrals as the pandemic eases, further adding to the pressure on inpatient waiting lists. Robust planning and allocation of adequate resources is essential to deal with this backlog. Cite this article: Bone Jt Open 2021;2(7):530-534.

SELECTION OF CITATIONS
SEARCH DETAIL